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The public health co-benefits of strategies consistent with
net-zero emissions: a systematic review

Léo Moutet, Paquito Bernard, Rosemary Green, James Milner, Andy Haines, Rémy Slama, Laura Temime, Kévin Jean

Moving towards net-zero emission societies is projected to provide human health co-benefits. However, the magnitude
of these co-benefits is poorly documented and might be context specific. Synthesising the evidence on these co-benefits
could enhance the engagement of decision makers and populations in climate mitigation actions. We performed
database searches of PubMed, Web of Science, and Scopus for studies published between database inception and
Jan 1, 2024, identifying 3976 papers. Of these, 58 quantitative studies met our inclusion criteria and were included in
this systematic review. These 58 papers explored 125 net-zero emission scenarios and considered various pathways by
which climate policies can affect human health. Pathways addressing air quality, physical activity, and dietary changes
found substantial health co-benefits, with a median mortality reduction of 1-5%. National or sub-national studies
showed that net-zero policies would yield substantial local air quality benefits, independently of the actions taken in
neighbouring countries. However, these co-benefits varied with explored emission sector, decarbonisation levers,
modelling approach, and location. Studies that included a cost-benefit analysis estimated that monetised benefits
outweighed the costs of implementing climate policies. This systematic review highlights the need for a standardised
framework to assess and compare health impacts of climate mitigation actions across sectors and confirms that
achieving net-zero goals supports far-reaching public health policies.

Introduction
On Dec 12, 2015, 196 governments adopted the Paris
Agreement that aims to reduce anthropogenic

greenhouse gas emissions to net zero by 2050 to limit
global warming well below 2°C above preindustrial
levels." Resulting nationwide commitments, identified
as nationally determined contributions, fall short of
addressing these objectives and most of the currently
implemented policies do not achieve pledged
contributions.”” In addition to nationally determined
contributions,  various  governmental or non-
governmental organisations have been developing
roadmaps that outline technical and political solutions
for society to attain net-zero emissions (ie, greenhouse
gas emissions reduced to the lowest possible level with
remaining emissions being offset by natural or artificial
carbon sinks).** These strategies activate different levers,
such as technological innovation to improve energy
efficiency and allow decarbonised energy production
and political, fiscal, and behavioural instruments to
reduce the use of energy and materials, often referred to
as demand-side policies.

Many climate mitigation policies are likely to benefit
human health by directly and indirectly targeting
modifiable environmental and behavioural risks, such as
air pollution or diet.*® Several studies have assessed the
health co-benefits arising from either single climate
mitigation actions or regional or national multisectorial
climate policies”®* The Lancet Pathfinder initiative
produced an umbrella review exploring the human health
co-benefits of a wide range of specific greenhouse gas
mitigation actions.® As yet, no systematic review has
explored the health impact of combinations of mitigation
actions that aim to achieve net-zero emissions.

Such an appraisal could provide valuable insights to
identify specific health pathways, sectors of activity, or

levers of decarbonisation that are likely to optimise the
co-benefits of climate mitigation actions. Summarising
the existing evidence regarding the health co-benefits of
pathways to net-zero greenhouse gas emissions is also
key to increasing the commitment of people and their
governments to climate actions, in a context where
implemented or pledged policies fall short of the goals of
the Paris Agreement.”

In this systematic review, we present the current
evidence regarding the health co-benefits of prospective
net-zero greenhouse gas emission scenarios (hereafter
referred to as net-zero scenarios). We compare the
predicted health co-benefits across published health
impact assessment studies, accounting for various sectors
of activity and co-benefit pathways. We also identify the
main gaps in knowledge, needs for future research, and
provide some recommendations for health impact assess-
ments of prospective net-zero emission scenarios.

Methods

We conducted a systematic review, following the
PRISMA 2020 guidelines." The PRISMA checklist is
available in appendix 2 (pp 5-7). The study protocol
was preregistered on June 5, 2023, in PROSPERO
(CRD42023429759).

Search strategy and selection criteria

We searched PubMed, Web of Science, and Scopus for
studies published between database inception and
Jan 1, 2024. The search query included two mandatory
terms, referring to health or mortality on the one side,
and to net-zero emissions targets or limited climate
change on the other. Health and mortality terms
included “health*” OR “mortality” OR “death*”. Net-zero
emissions targets or limited climate change terms
included “net zero” OR “net-zero” OR “decarboni*” OR
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3 full text not available
10 no health (or economic)
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14 the aim of the scenario
is not net-zero
emissions

A

58 studies included in the systematic review

Figure 1: Flow diagram of study selection

“transition scenario” OR “carbon neutrality” OR “Paris
Agreement” OR “climate change act” OR “climate
change action*” OR “climate change acts” OR “climate
change target*” OR “below 2°C” OR “below 1-5°C” OR
“limited to 2°C” OR “2°C scenario” OR “2°C trajectory”
OR “limited to 1-5°C” OR “1.5°C scenario” OR
“1.5°C trajectory”. The detailed search strategy and
selection criteria are available in appendix 2 (p 8).

Screening

Studies identified in the database searches were screened
by two independent reviewers (LM and K]J) using the
Covidence systematic review software (Veritas, Health
Innovation, Melbourne, Australia). A third researcher (LT)
resolved any conflicts.

Screening was first carried out based on titles and
abstracts, from which only original research pieces were
included. At this stage, we only included studies explicitly
referring to a greenhouse gas emission objective and
assessing quantitative health outcomes or an economic
valuation of health impacts. Qualitative studies, reviews,
meta-analyses, or opinion pieces were excluded, although
we screened meta-analyses and reviews for potential
studies to include. 2490 studies were excluded at this
screening stage.

In the subsequent full-text assessment, we included
studies that relied on a prospective scenario that included
socioeconomic or technical choices sufficient to attain

net-zero greenhouse gas emissions or to limit climate
warming to 1-5°C to 2°C, as called for in the Paris
Agreement.? According to the Net Zero Coalition,
emissions need to reach net zero by 2050 or shortly after
to limit global warming to 1-5°C.” Studies also had to
provide quantitative estimates of health impacts or
economic assessments of such benefits, and had to
explore at least one health co-benefit pathway of
mitigation actions.

Co-benefit pathways were defined as the improvement
of human public health issues that are not mediated by
climate, but would be addressed by climate mitigation
policies. Co-benefit pathways included, but were not a
priori limited to, air quality improvement, enhanced
active travel, and healthy dietary patterns. We considered
the reduction of exposure to extreme heat or other
climate change impacts as direct benefits of climate
mitigation policies, and therefore excluded them from
our analyses.

Data extraction

For all included articles, two authors (LM and PB)
independently extracted information on the following
characteristics: time period studied, location (eg,
worldwide, national, sub-national), emission sectors
considered (eg, power generation, transportation, and
agriculture, forestry, and other land use [AFOLU]),
co-benefit pathways considered (eg, diet, physical
activity, air pollution), and assessed health outcome
metrics (eg, number of deaths prevented, life-years
gained). When available, the disaggregated impacts
estimated across different sectors or pathways were
extracted. We also retrieved characteristics regarding
the modelling methods (eg, demographic hypothesis,
models of exposure), health impact assessment
approach, and exposure-response function applied
(appendix 2 pp 11-14).

For each study (and each scenario assessed when the
study assessed several scenarios), we categorised net-zero
scenarios based on the major lever of mitigation assumed,
using the following in-house categorisation: energy
decarbonisation, demand reduction (or sufficiency), health
in climate policies, and financial instrument. Further
details on categorisation are available in appendix 2 (p 9).
Baseline scenarios were also categorised based on their
assumptions regarding the evolution of greenhouse gas
emissions or utilisation of a reference year (appendix 2

p 15).

Confidence assessment

Since there is no validated tool to assess methodological
bias in health impact assessment studies, we referred to
guidelines reported by Hess and colleagues® for
modelling and reporting health effects of climate change
mitigation actions. Of the 36 modelling or reporting
criteria suggested by Hess and colleagues, we retrieved
those relevant to our study context and merged them into
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Figure 2: Geographical distribution of studies included in the systematic review

The 12 worldwide studies included in the systematic review are not represented on the map.

major topics, resulting in 13 final criteria (appendix 2
p 10).

Health impact scaling

To compare health impacts across studies, we retrieved
and scaled estimates of the number of deaths prevented,
life-years gained, or both. When only life-years gained
were estimated and if the region of investigation was
available in the Global Burden of Disease 2021, life-years
gained were converted into premature deaths prevented.”
The scaled outcome analysed was the preventable
mortality fraction, estimated by the ratio between the
number of deaths prevented by a scenario relative to a
baseline and the number of deaths projected for the
associated location, time, and age range. More details on
the scaling calculations are provided in appendix 2 (p 2).
Analyses were conducted using R (version 4.2.3) and are
available online.

Results
Descriptive findings
We identified 3976 records from the three databases, of
which 1433 duplicates were removed (figure 1). All
corresponding authors from included studies were
contacted in December, 2023, to request potentially
relevant unidentified peer-reviewed studies. Of the
2582 abstracts screened, 92 qualified for full-text
screening. In the full-text assessment, 34 studies were
excluded, mainly because they did not estimate
quantitative health metrics (n=10) or because they were
not explicitly based on net-zero scenarios (n=14).
58 studies met our inclusion criteria (appendix 2
pp 11-14).

In addition to 12 worldwide studies,”* eight studies
were conducted on a multinational scale (figure 2)
involving between two and 139 countries,”**** and

25 studies were conducted in single countries. These
national assessments focused on northeast Asia,
Europe,”™* India,”* or the USA,” and 13 sub-national
studies were conducted in east China,** Europe,™*
California (USA),*** Virginia (USA),” and Santiago
(Chile)®

The main characteristics of included studies are
described in figure 3. 53 (91%) of the 58 included studies
were published since 2018 (figure 3A).

Net-zero emission scenarios

14 (24%) of the 58 studies assessed comprehensive
scenarios from external prospective net-zero emission
plans—ie, developed by a governmental or non-
governmental institution. Ten (17%) studies based their
scenarios on official nationally determined contributions
and 20 (34%) studies relied on the temperature target
from the Paris Agreement to estimate subsequent
greenhouse gas emissions and air pollution projections.
For 14 (24%) studies, the authors developed an in-house
scenario (eg, net-zero CO, emission target years for each
of the G20 countries) to assess the impacts of various
specific measures (appendix 2 pp 3,4).

Of the 125 scenarios presented in the 58 papers,
58 (46%) scenarios provided specific details on the
projected levers to achieve net-zero emissions
(figure 3B). The main policy lever identified was
decarbonisation of the energy sector through
the scale-up of technologies, such as carbon capture
and storage, renewable energy, electrification, or
development of nuclear energy production. Some
scenarios aimed specifically at the improvement of
human health in a health in all policies approach, most
commonly by improving air quality.”?2» 2310585040870
Seven (6%) scenarios relied on demand-side
interventions (eg, decreased energy or transport

www.thelancet.com/planetary-health Published online February 12, 2025 https://doi.org/10.1016/52542-5196(24)00330-9

For more on the online analyses
see https://github.com/
LeoMoutet/revue_syst


https://github.com/LeoMoutet/revue_syst
https://github.com/LeoMoutet/revue_syst
https://github.com/LeoMoutet/revue_syst

Review

A B
155 Studies or scenario with a scalable health outcome

I No
= Yes

Energy shift
Finance
Health
Sufficiency

Type of scenario

Not detailed

10 C

All-encompassing
Energy
AFOLU

Housing

Number of studies

Emission sector

Transport

Multisectorial

D

Physical activity
Diet

Co-benefit
pathway

Air pollution
0 T T T T T T 1
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 0 10 25 50 75 100 120

Year of publication Number of scenarios

Figure 3: Descriptive analysis of included studies, by publication year (A), type of scenario (B), emission sector (C), and co-benefit pathway studied (D)
Some studies included more than one sector in their analyses (ie, multisectorial) and others modelled global anthropogenic emissions (ie, all-encompassing).
AFOLU=agriculture, forestry, and other land use.
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Figure 4: Sankey diagram showing linkage between type of net-zero scenario, emission sector, co-benefit pathway, and health outcome

Net-zero scenarios can have links to several emissions sectors, co-benefit pathways, and health outcomes. Air pollution captures ambient air pollution only. Indoor air
quality refers to the global quality of the indoor air environment. AFOLU=agriculture, forestry, and other land use. DALYs=disability-adjusted life-years. Several studies
focused only on one sector could assess multiple types of scenarios; similarly, several studies only assessing one health pathway could rely on a multisectorial
emission model.

demand).®#¥#5% Four (3%) scenarios relied on Emission sectorsand co-benefit pathways considered
financial instruments (eg, carbon taxes or parking For each scenario proposed in the included papers, we
pricing)®**¢¢ projected to induce various behavioural explored the emission sector, co-benefit pathway, and
shifts (appendix 2 p 15). health outcome (figure 4).
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The emission sectors most frequently studied were
energy (n=40), transport (n=27), industry (n=21), housing
(n=15), and AFOLU (n=13; figure 3C). 23 (40%) of
58 studies were multisectorial and 14 (24%) studies
modelled global anthropogenic emissions (ie, all-
encompassing), with 13 (22%) of 58 studies including
natural emissions (eg, vegetation fire, dust, sea sprays, and
biogenic volatile organic compounds). These studies did
not incorporate any specific changes in natural emissions
based on the scenarios.

Regarding co-benefit pathways, 56 (97%) of 58 studies
assessed health impacts related to air quality, including
fine particulate matter or PM,; (n=53), O, (n=22),
SO, (n=4), NO, (n=3), NO, (n=4), and PM,, (n=3); five of
these studies included indoor exposures to PM, ; (n=5),
radon and tobacco smoke (n=2), O, (n=1), increased
winter temperature attributable to home energy
efficiency (n=1), and mould (n=1). Of the 53 studies
including PM, , 17 (32%) specifically considered black
carbon. Five (9%) of the 58 scenarios investigated
physical activity enhanced by active travel,** whereas
four (7%) scenarios examined dietary changes with a
reduction in red meat consumption (figure 3D).*
Two (3%) studies combined air pollution, diet, and
physical activity,”® two (3%) studies focused exclusively
on physical activity,** and one (2%) study focused on
indoor air temperature and air quality (ie, PM, ,, radon,
tobacco smoke, and mould).*

Modelling exposures and outcomes

Various health outcomes were quantified in the 58 studies
selected: 46 (79%) estimated the number of premature
deaths prevented, four (7%) calculated changes in life
expectancy, six (10%) assessed life-years gained, and
one (2%) calculated disability-adjusted life-years.
Additionally, seven (12%) studies specified morbidity
outcomes and 28 (48%) studies conducted an economic
assessment. 24 (86%) of these 28 studies used the value
of a statistical life-year, five (18%) added a cost of illness
assessment, and two (7%) a social cost of carbon
assessment. Other studies based their assessment on
external costs from the European Commission (n=2),"*
the unit value of health outcome (n=1),” or the cost of
conserved energy (n=1).”

Several frameworks for modelling exposure were used
across included studies to: spatialise air pollution
concentrations based on emissions reduction using
a single model (eg, GEOS-Chem, Polyphemus) or a model
mixture (eg, a combination of WRF-Chem with GAINS);
attribute health outcomes to changes in active travel in the
population; and attribute health outcomes to changes in
dietary patterns in the population.

There were fewer methods to quantify health
outcomes, with 44 (76%) of 58 studies using com-
parative risk assessment methods, 13 (22%) studies
relying on lifetable approaches, and one (2%) employing
microsimulations.*

Confidence rating scale

Specification of target population
Demographic and exposure allocation
Describe exposure-response functions
Appropriate health metrics

Defined timeframes

Describe mitigation policies
Correspondence with agreed-on scenarios
Equity impact

Adverse consequences of mitigation actions

Confidence assessment criteria

Limitations and source of uncertainty
Sensitivity analysis
Data sources

Publicly shared data and code

Bl No [ Unclear [ Yespartially [EH Yes

T T
0 30

Number of articles

60

Figure 5: Confidence assessment of included studies per criteria adapted from Hess and colleagues™

Confidence assessment

According to our criteria adapted from Hess and
colleagues,” general modelling methods were overall
well conducted (including the specification of target
population, demographic and exposure allocation,
exposure-response functions, health metrics, time-
frames, and the description of mitigation policies). The
policies, scenarios, and timeframes were well defined,
whereas the most overlooked criterion was the evaluation
of the equity impacts of policy adoption (figure 5).
Discussion of the adverse consequences of mitigation
actions, sources of uncertainty, and sensitivity analyses
had lower confidence ratings. In addition, very little data
and code were publicly available. Detailed results of the
confidence assessment by study are available in
appendix 2 (pp 11-14).

Synthesis of the evidence

Quantitative health impact

We were able to retrieve and scale the preventable
mortality fraction of 96 scenarios across 45 studies. Of
these scenarios, two (2%; from one study) reported
detrimental health impacts (ie, adverse effects on health)
in the energy sector (-0-09% and —0-04% of mortality
fraction).” All other scenarios (ie, 94 [98%)] of 96) yielded
considerable reductions in all-cause mortality, with a
median value of 1-48% (IQR 0-55-3-59), and a highest
estimated impact of 18-74% figure 6A).” The estimated
health impacts were on average lower in studies using
lifetables (figure 6B) and higher when accounting for
increasing greenhouse gas emissions in the baseline
scenario (figure 6C); these were also the findings when
considering air pollution pathway only (appendix 2 p 16).
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Figure 6: Preventable mortality fraction in various net-zero scenarios
(A) All scalable preventable mortality fractions from 96 scenarios across 45 studies with a scalable health outcome. (B) Preventable mortality fraction stratified by quantitative modelling method.
(C) Preventable mortality fraction stratified by type of baseline scenario. (D) Preventable mortality fraction stratified by type of co-benefit pathway. (E) Preventable mortality fraction stratified by
emission sector. Horizontal bar represents the median value of preventable mortality (ie, 1-5%). AFOLU=agriculture, forestry, and other land use.

Although very few studies assessed the impacts of diet
and physical activity pathways, the benefits arising from
changing their patterns have the potential to yield
substantial health benefits (figure 6D). Modelling
emissions from multiple or unique sectors might have
provided equivalent health benefits as the use of whole-
economy models (figure 6E). We did not identify any
single common factor among the scenarios that yielded
the greatest health benefits. For the 13 studies that
compared the economic benefits arising from health
impacts and the implementation costs of the policies,
11 (85%) studies found net benefits and two (15%) found
a partial compensation (or a net benefit depending on the
country).

Health impact across emission sectors and pathways of
co-benefits
Most studies focused only on air pollution in association
with one or several emission sectors (figure 6D;
appendix 2 pp 11-14); resulting health impacts have a
wide range, similar to that observed for pathways related
to physical activity and diet.

Regarding the most frequently studied air pollutants,
PM,, and O,, the sectors associated with the largest
health co-benefits were industry, indoor air quality,

energy, transport, and AFOLU.##%7 Population density,
emission sectors, and baseline levels were important
drivers of potential health benefits arising through
better air quality.***#% Health co-benefits from
decreasing air pollution arose mainly from reduced
acute and chronic cardiovascular and respiratory tract
diseases.?***506

Increased physical activity also generated substantial
public health benefits, comparable to the gains expected
from large-scale health prevention interventions.™
When comparing different pathways across several
countries, Hamilton and colleagues’ observed that the
attainment of net-zero emissions yielded larger
co-benefits through dietary shifts, compared with air
pollution reduction or active travel. In terms of health
benefits, the ranking of pathways also depended on
regional context and the number of mitigation actions
modelled.”®

Health impact across the typology of net-zero scenarios

Due to a higher potential for reducing air pollution,
a scenario that implemented demand reduction policies
provided greater health benefits than an energy
decarbonisation scenario.” Greater benefits were
expected if the energy sector was based on renewable
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instead of carbon capture and storage technologies.”
Scenarios relying on electrification and clean renewable
energy in a health in all policies approach can yield four-
times more health co-benefits than scenarios featuring
combustible renewable fuel.® A city-level study in
Beijing, China, found that developing active travel and
public transport yielded higher health co-benefits than
the electrification of private vehicles (even without
accounting for increased physical activity).” Different
socioeconomic projections, priorities given, and levels
of ambition yielded very different health impacts,”
especially for physical activity and diet.?

Equity impact and regional disparities in net-zero scenarios
Only 6 (10%) of 58 studies explored the distribution of
health impacts regarding populations that are socially
and economically marginalised. In India, health benefits
of net-zero emission scenarios were modelled to be
higher for men, individuals living in urban environments,
and populations with a high sociodemographic index.”
The implementation of integrated climate, air quality,
and clean energy access interventions had a synergistic
impact, substantially reducing the number of children
with stunted growth, particularly those living in the most
disadvantaged geographical regions.”

Ambitious greenhouse gas reduction efforts in
California, USA, provided substantial health co-benefits,
especially for residents of communities that are
disadvantaged.® In the USA, the enhanced electrification
of the transport sector was shown to benefit communities
that are disadvantaged more effectively than building
electrification.” Accounting for air pollution-related
health impacts showed that climate policies have the
potential to reduce inequality and increase welfare at
several geographical scales, partly because in some
regions, the communities that were the most
disadvantaged were more exposed.®® However, even if
inequalities were reduced with air quality improvements,
they would remain high as long as control measures do
not target low-income regions.”

Partly due to a high baseline exposure and population
density, air pollution co-benefits were the greatest for
China and India (appendix 2 p 17)77®»* In
G20 countries, benefits were mainly attributable to PM, g
emission reduction.®® Mitigation policies affecting air
pollution emissions had substantial transboundary
health impacts, with the transport sector being a major
contributor to these benefits.”* Carbon trading based on
historical mitigation rate and low-carbon investment
transfer across regions improved the efficiency of global
mitigation actions in some contexts.” Disparities in
health impacts were also influenced by population
ageing, which is expected to increase in the coming
years. However, the health co-benefits arising from air
pollution mitigation have the potential to offset the
effects of population ageing, even for a rapidly ageing
country, such as China.##¢

Discussion

Review findings

Studies assessing the health impact of scenarios aimed at
net-zero emissions show public health co-benefits
arising from a range of scenarios, emission sectors, and
co-benefit pathways (figure 4). 94 (98%) of 96 scenarios
found favourable health impacts that depended on the
scenario assumptions, co-benefit pathways, and region
of implementation. 48 (50%) of 96 scenarios yielded
preventable mortality fractions of over 1-5%, which
represents 234 life-years gained per 100000 individuals
(appendix 2 p 18). However, health impacts cannot
simply be extrapolated from one setting to another due to
heterogeneity in co-benefit pathways, demographic
characteristics, modelling methods, and assumptions.
11 (85%) of 13 studies that compared implementation
costs with monetised health benefits reported that the
costs of net-zero policies would be offset by the economic
gains provided by health benefits.

The available evidence mostly focused on three major
health pathways: dietary risks have been estimated to be
responsible for up to 7 million global deaths annually,
air pollution from fossil fuel combustion for
5 million global deaths annually, and physical inactivity
for 4 million global deaths annually.*”” Similarly to
improved dietary patterns, reduced exposure to air
pollution would have the potential to yield very
important health benefits, especially in high-density
and polluted regions.” More comprehensive policies also
targeting indoor air quality could yield larger health
benefits in some regions.® Active travel policies also
have a great potential where low physical activity already
induces a high health burden.’

Our systematic review identified several sources of
variability in the assessed health outcomes. In the
reviewed studies, most health outcomes were assessed
either by comparative risk assessment methods or
lifetable approaches. Comparative risk assessment is a
simpler approach, but might overestimate health
outcomes because it completely averts a proportion of
deaths. Lifetable approaches adopt a more realistic model
of deaths over time, as they account for age-specific
mortality in the population.” The assumptions regarding
the baseline scenario, especially the evolution of
greenhouse gas emissions, might affect the magnitude
of predicted health outcomes (figure 6C).

Explored scenarios and settings were also highly
variable. Energy decarbonisation based on various
technologies received the highest attention. However,
many net-zero scenarios were not explicit in the
transformations assumed to achieve net zero. Despite
the high mitigation potential and synergy with wellbeing
of demand reduction strategies, these were often
marginalised in climate policy and scenarios (appendix 2
p 15), with many studies failing to specify implementation
mechanisms.®”* Most studies were performed in high-
income regions (appendix 2 p 19) and only a few
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addressed health inequalities, despite their relevance for
public health and environmental justice.”

Implications of the results

Given the long residence time of some greenhouse
gases (especially CO,) in the atmosphere, accelerated
and equitable mitigation actions have the potential to
attain net-zero emissions only at mid-term (ie, a decade)
to long-term (ie, several decades), depending on the
emission sector (2030-35 for AFOLU and 2050 for
industry).® Conversely, these same actions have the
potential to improve health and wellbeing immediately”
by improving cardiovascular, respiratory, and mental
health outcomes associated with co-benefit pathways,””
particularly from air pollution, diet, and physical
activity.®

Another important feature of the health co-benefits of
climate mitigation policies highlighted by this systematic
review is their largely unconditional nature. From a
climate perspective, mitigation actions must be
implemented in most countries and regions to mitigate
global warming. As climate benefits are conditional to
global coordinated actions, they might be prone to the
free-rider problem, where actors do not actively
contribute to efforts while expecting to take advantage of
collective benefits. Conversely, most of the studies
projecting net-zero scenarios reported important health
co-benefits while making no specific assumption
regarding global coordinated climate actions. In other
words, health co-benefits of mitigation policies are
largely unconditioned to climate action from other
countries or regions, and therefore are likely to be less
affected by the free-rider problem. For some pathways
(eg, physical activity and diet), the health benefits are
restricted to the countries and regions that implement
the policies. For air quality, the magnitude of health
benefits partly depends on the policies implemented by
neighbouring countries,** but 34 (97%) of the 35 studies
assessing air pollution pathways at a national or sub-
national scale revealed that net-zero policies would bring
substantial local air quality benefits, independently of the
actions taken in neighbouring countries.

Relying on monetary valuation of health impacts,
studies have shown that health co-benefits of climate
policies have the potential to outweigh the costs of
net-zero policies, depending on the region, with India
and China showing the largest benefits. The
Intergovernmental Panel on Climate Change also
reported that the global benefits of climate policies (not
accounting for health) exceed the cost of mitigation.?
Economic impact assessments anticipate other benefits
directly or indirectly affecting human health, such as
the net creation of millions of jobs, fewer work days
lost, and tens of billions of dollars for labour
productivity, crop yield increases, reduced hospital
expenditures,””¥® and a more resilient energy
system.”

Research gaps

The high heterogeneity of retrieved studies regarding
scenarios, emission sectors, co-benefit pathways, and
modelling approaches prevented us from drawing
conclusions about a clear ranking of co-benefit pathways
in terms of potential health impact. In addition, our
comparison of health impacts does not account for
factors that could potentially lead to differences across
studies, particularly due to variations in locations and
study populations.

Although our systematic review highlights important
health and economic benefits, numerous health impacts
remain underestimated. For example, a modal shift to
active transportation could provide additional health
co-benefits by reducing noise exposure and road travel
injuries (if motor vehicles are separated from cyclists and
pedestrians).” Health benefits in the transport sector are
also expected through improved air quality and mobility
independence.” Health impacts related to infectious
disease control can also be expected, with various
pathways involved.® Included health impact assessments
also fail to address mental health impacts, despite
evidence suggesting an association between air quality
and physical activity with mental health.”**" Adaptation
measures that are not accounted for, such as urban green
space, also have the potential to yield substantial health
benefits.® Incorporating indoor air quality is essential to
assess potentially detrimental health impacts associated
with poorly ventilated housing.® Lastly, only one study
considered the impact of prenatal environmental
exposures.”

Uncertainties in health impact quantification also
result from difficulties in considering multiple variables,
such as specific exposure-response functions (eg, across
age, sex, or social factors) or the specific distribution of
exposures in the studied population. For each mitigation
action, there are also potential positive synergistic effects
that can be hard to account for in quantitative
assessments, such as reduced air pollution emissions
along with changes in active travel and dietary patterns.
Conversely, extreme climate hazards can restrain cycling
behaviours, and health impacts from combined air
pollution and heat exposure are exacerbated.” Prospective
assessments also assume consistent health-care system
efficiency across all scenarios, although higher air
pollution and temperature are associated with increased
hospital admissions.*

Many of the studies and scenarios are from high-
income and upper-middle-income regions, where the
mitigation efforts are expected to be the greatest, and
therefore related societal changes are expected to be
important. Whether the magnitude of health co-benefits
would be of the same scale in low-income countries
remains unclear and will depend on levels of fossil fuel-
related air pollution, dietary patterns, and levels of
physical activity.” For example, evidence suggests that air
pollution reduction (and notably indoor air pollution
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from cooking stoves) could have a high health co-benefit
potential in India.”** Conversely, one study showed that
only modest benefits might be expected in Nigeria from
sustainable diet policies.’

Evidence on the feasibility and acceptability of
implementing assessed actions is scarce. However,
known effective interventions include dietary modi-
fications  through education, persuasion, and
environmental restructuring.® For air pollution, the
implementation of effective mitigation strategies
requires collaborative actions across multiple stake-
holders, including policy makers, civil society,
communities, and academia.* In the transport sector,
active mobility policies are most effective when
integrating safe walking and cycling infrastructure with
strong public transport support and educational
programmes.” Systems thinking in urban climate
policies can enable stakeholders to achieve benefits from
multisectorial actions and maximise benefits across
climate, health, and urban development.®

Finally, we did not investigate grey literature due to
methodological issues, and might thus have missed
assessments published as reports. Additionally, as our
study selection relied on generic search terms, we could
have overlooked studies only mentioning disease-specific
terms.

Perspectives and future directions

Here, we make several recommendations for future
health impact assessment of net-zero scenarios, inferred
from our systematic review.

First, studies should clearly state and justify which
mitigation levers are implied by the policy assessed to
better estimate the impacts of diverse types of net-zero
emission policies.””* Demand-side mitigation policies
are essential as they have the potential to induce
fundamental lifestyle changes that would support the
implementation of sustainable and healthy actions.™
Policies and actions must extend beyond technological
efficiency improvements to address unsustainable
systems that drive high energy and material demands,
leading to elevated emissions while neglecting healthy
environments.® This aspect is particularly evident in the
transport sector, where decarbonisation policies
exclusively focused on technological improvements
could exacerbate physical inactivity in the population.®

As ageing populations can have a substantial impact on
estimates,” health impact assessments should prefer
lifetable approaches to estimate more accurately health
impacts over time; baseline scenarios should include
a projection of the studied population to compare the
impacts based on the same population pyramid.
Prospective health impact assessments of net-zero
scenarios should carefully use adapted vulnerability
indicators to assess health impacts when possible
and should otherwise address inequality impacts
qualitatively.”” Assessment of energy decarbonisation

policies should address energy poverty, which has
environmental justice implications.” Our systematic
review highlighted that the literature is dominated by
results produced in nations that are high emitters of
greenhouse gases.

The paucity of code and data sharing by most of the
studies presents a barrier to advancing health impact
monitoring associated with net-zero scenarios, such as
the development of living systematic reviews.
Accelerating research and monitoring of health outcomes
are essential to provide evidence-based and timely
feedback to decision makers.

Although diverse modelling methods could explore
wide types of co-benefits and climate actions, a unified
framework would be useful to compare the mitigation
and co-benefit pathway levers.”® Such a framework
would include description of the exposures, outcomes,
pathways, exposure-response function, demographic
projections, health impact assessment methods
(preferring lifetable approaches and relevant baseline
scenarios), and attribution of health outcomes over
time.”

Conclusion

Our synthesis of the available evidence suggests that, in
high greenhouse gas-emitting countries, achieving
net-zero emissions across different sectors would generate
large health co-benefits and prevent a considerable
fraction of mortality. Therefore, each further delay in
implementing transformative changes towards a
net-zero society not only increases risks induced by
climate change, but also is a missed opportunity to
improve human health. Health co-benefits of climate
mitigation policies are expected to manifest in the short
term, are not conditioned to global coordinated climate
action, and can outweigh the costs of mitigation policies,
highlighting how health co-benefits can drive impactful
mitigation action.
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